RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2019 Volume 60, Number 3, Pages 630–639 (Mi smj3099)

Decompositions of dual automorphism invariant modules over semiperfect rings

Y. Kuratomi

Department of Mathematics, Faculty of Science, Yamaguchi University, Yoshida, Yamaguchi, Japan

Abstract: A module $M$ is called dual automorphism invariant if whenever $X_1$ and $X_2$ are small submodules of $M$, then each epimorphism $f: M/X_1\to M/X_2$ lifts to an endomorphism $g$ of $M$. A module $M$ is said to be $\mathrm{d}$-square free (dual square free) if whenever some factor module of $M$ is isomorphic to $N^2$ for a module $N$ then $N=0$. We show that each dual automorphism invariant module over a semiperfect ring which is a small epimorphic image of a projective lifting module is a direct sum of cyclic indecomposable $\mathrm{d}$-square free modules. Moreover, we prove that for each module $M$ over a semiperfect ring which is a small epimorphic image of a projective lifting module (e.g., $M$ is a finitely generated module), $M$ is dual automorphism invariant iff $M$ is pseudoprojective. Also, we give the necessary and sufficient conditions for a dual automorphism invariant module over a right perfect ring to be quasiprojective.

Keywords: dual automorphism invariant module, pseudoprojective module, dual square free module, finite internal exchange property, (semi)perfect ring.

UDC: 512.55

MSC: 35R30

Received: 19.07.2018
Revised: 15.11.2018
Accepted: 19.12.2018

DOI: 10.33048/smzh.2019.60.311


 English version:
Siberian Mathematical Journal, 2019, 60:3, 490–496

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026