RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2019 Volume 60, Number 1, Pages 3–13 (Mi smj3054)

This article is cited in 3 papers

Lower bounds of complexity for polarized polynomials over finite fields

A. S. Baliuka, A. S. Zinchenkob

a LLC Informatics of Medicine, Irkutsk, Russia
b Irkutsk State University, Irkutsk, Russia

Abstract: We obtain an efficient lower bound of complexity for $n$-ary functions over a finite field of arbitrary order in the class of polarized polynomials. The complexity of a function is defined as the minimal possible number of nonzero terms in a polarized polynomial realizing the function.

Keywords: lower bound of complexity, polarized polynomial, finite field.

UDC: 519.714.4

Received: 19.04.2018
Revised: 19.04.2018
Accepted: 17.08.2018

DOI: 10.33048/smzh.2019.60.101


 English version:
Siberian Mathematical Journal, 2019, 60:1, 1–9

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026