RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 4, Pages 927–952 (Mi smj3020)

This article is cited in 1 paper

Orthogonality relations for a stationary flow of an ideal fluid

V. A. Sharafutdinovab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: For a real solution $(u,p)$ to the Euler stationary equations for an ideal fluid, we derive an infinite series of the orthogonality relations that equate some linear combinations of $m$th degree integral momenta of the functions $u_iu_j$ and $p$ to zero ($m=0,1,\dots$). In particular, the zeroth degree orthogonality relations state that the components ui of the velocity field are $L^2$-orthogonal to each other and have coincident $L^2$-norms. Orthogonality relations of degree $m$ are valid for a solution belonging to a weighted Sobolev space with the weight depending on $m$.

Keywords: Euler equations, stationary flow, ideal fluid, integral momenta.

UDC: 517.956

MSC: 35R30

Received: 30.09.2017

DOI: 10.17377/smzh.2018.59.415


 English version:
Siberian Mathematical Journal, 2018, 59:4, 731–752

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026