RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 2, Pages 241–256 (Mi smj2968)

This article is cited in 13 papers

Generalized angles in Ptolemaic Möbius structures

V. V. Aseev

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: We show that each Ptolemaic semimetric is Möbius-equivalent to a bounded metric. Introducing generalized angles in Ptolemaic Möbius structures, we study the class of multivalued mappings $F\colon X\to2^Y$ with a lower bound on the distortion of generalized angles. We prove that the inverse mapping to the coordinate function of a quasimeromorphic automorphism of $\overline{\mathbb R}^n$ lies in this class.

Keywords: Möbius structure, Ptolemy's inequality, Ptolemaic semimetric, angular metric, Möbius-invariant metric, quasimöbius mapping, generalized angle, quasimeromorphic mapping.

UDC: 517.54

MSC: 35R30

Received: 14.07.2017

DOI: 10.17377/smzh.2018.59.201


 English version:
Siberian Mathematical Journal, 2018, 59:2, 189–201

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026