RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 1, Pages 185–196 (Mi smj2964)

This article is cited in 8 papers

Weakly periodic Gibbs measures for HC-models on Cayley trees

R. M. Khakimov

Namangan State University, Namangan, Uzbekistan

Abstract: We study hard-core (HC) models on Cayley trees. Given a $2$-state HC-model, we prove that exactly two weakly periodic (aperiodic) Gibbs measures exist under certain conditions on the parameters. Moreover, we consider fertile $4$-state HC-models with the activity parameter $\lambda>0$. The three types of these models are known to exist. For one of the models we show that the translationinvariant Gibbs measure is not unique.

Keywords: Cayley tree, configuration, HC-model, fertile graph, Gibbs measure, weakly periodic measure, translation-invariant measure.

UDC: 517.98

Received: 07.12.2015

DOI: 10.17377/smzh.2018.59.116


 English version:
Siberian Mathematical Journal, 2018, 59:1, 147–156

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026