RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2017 Volume 58, Number 6, Pages 1401–1417 (Mi smj2947)

This article is cited in 2 papers

On the inhomogeneous conservative Wiener–Hopf equation

M. S. Sgibnev

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: We prove the existence of a solution to the inhomogeneous Wiener–Hopf equation whose kernel is a probability distribution generating a random walk drifting to $-\infty$. Asymptotic properties of a solution are found depending on the corresponding properties of the free term and the kernel of the equation.

Keywords: integral equation, inhomogeneous equation, inhomogeneous generalized Wiener–Hopf equation, probability distribution, drift to minus infinity, asymptotic behavior.

UDC: 517.968.2

MSC: 35R30

Received: 22.03.2016

DOI: 10.17377/smzh.2017.58.618


 English version:
Siberian Mathematical Journal, 2017, 58:6, 1090–1103

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026