RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2017 Volume 58, Number 5, Pages 1015–1025 (Mi smj2915)

Lie algebras induced by a nonzero field derivation

A. G. Gein

Ural Federal University, Ekaterinburg, Russia

Abstract: Given a finite-dimensional associative commutative algebra $A$ over a field $F$, we define the structure of a Lie algebra using a nonzero derivation $D$ of $A$. If $A$ is a field and $\operatorname{char}F>3$; then the corresponding algebra is simple, presenting a nonisomorphic analog of the Zassenhaus algebra $W_1(m)$.

Keywords: simple Lie algebra, field derivation, Zassenhaus algebra, $A$-algebra.

UDC: 512.55

MSC: 35R30

Received: 15.09.2016

DOI: 10.17377/smzh.2017.58.505


 English version:
Siberian Mathematical Journal, 2017, 58:5, 786–793

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026