RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2017 Volume 58, Number 4, Pages 813–827 (Mi smj2900)

This article is cited in 3 papers

On finite groups isospectral to $U_3(3)$

Yu. V. Lytkinab

a Novosibirsk State University, Novosibirsk, Russia
b Siberian State University of Telecommunications and Information Sciences, Novosibirsk, Russia

Abstract: The spectrum of a finite group is the set of all its element orders. A finite group $G$ is calledcritical with respect to a subset $\omega$ of natural numbers, if $\omega$ coincides with the spectrum of $G$ and does not coincide with the spectrum of any proper section of $G$. We study the structure of groups isospectral to a simple unitary group $PSU(3,3)$. In particular, we give a description of the finite groups critical with respect to the spectrum of $PSU(3,3)$

Keywords: finite group, spectrum, critical group, nonabelian simple group.

UDC: 512.542

MSC: 35R30

Received: 25.07.2016

DOI: 10.17377/smzh.2017.58.409


 English version:
Siberian Mathematical Journal, 2017, 58:4, 633–643

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026