RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2017 Volume 58, Number 3, Pages 510–525 (Mi smj2876)

This article is cited in 2 papers

An extremal problem in the Hardy space $H_p$, $0<p<\infty$

Kh. Kh. Burchaeva, V. G. Ryabykhb, G. Yu. Ryabykhc

a Chechnya State University, Groznyĭ, Russia
b Southern Federal University, Rostov-on-Don, Russia
c Don State Technical University, Rostov-on-Don, Russia

Abstract: We prove that if the function determining a linear functional over the Hardy space is analytic on the disk of radius greater than 1 then the extremal function of this functional is analytic on the same disk.

Keywords: Hardy space, linear functional, extremal function, uniqueness, derivative.

UDC: 517.53/57

Received: 26.05.2016

DOI: 10.17377/smzh.2017.58.303


 English version:
Siberian Mathematical Journal, 2017, 58:3, 392–404

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026