RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2017 Volume 58, Number 3, Pages 485–496 (Mi smj2874)

Quasiconformal extension of quasimöbius mappings of Jordan domains

V. V. Aseev

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: We introduce the new class of Jordan arcs (curves) of bounded rotation which includes all arcs (curves) of bounded turning. We prove that if the boundary of a Jordan domain has bounded rotation everywhere but possibly one singular point then every quasimöbius embedding of this domain extends to a quasiconformal automorphism of the entire plane.

Keywords: quasiconformal mapping, quasisymmetric mapping, quasimöbius mapping, curve of bounded rotation, curve of bounded turning, quasiconformal extension, Rickman criterion.

UDC: 517.54

MSC: 35R30

Received: 11.08.2016

DOI: 10.17377/smzh.2017.58.301


 English version:
Siberian Mathematical Journal, 2017, 58:3, 373–381

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026