RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2017 Volume 58, Number 1, Pages 143–147 (Mi smj2847)

This article is cited in 6 papers

$k$-invariant nets over an algebraic extension of a field $k$

V. A. Koibaevab, Ya. N. Nuzhinc

a North Ossetian State University named after K. L. Hetagurov, Vladikavkaz, Russia
b Southern Mathematical Institute, Vladikavkaz, Russia
c Siberian Federal University, Krasnoyarsk, Russia

Abstract: Let $K$ be an algebraic extension of a field $k$, let $\sigma=(\sigma_{ij})$ be an irreducible full (elementary) net of order $n\geq2$ (respectively, $n\geq3$) over $K$, while the additive subgroups $\sigma_{ij}$ are $k$-subspaces of $K$. We prove that all $\sigma_{ij}$ coincide with an intermediate subfield $P$, $k\subseteq P\subseteq K$, up to conjugation by a diagonal matrix.

Keywords: general and special linear groups, full and elementary nets of additive subgroups, net subgroup, algebraic extension of a field.

UDC: 512.5

MSC: 35R30

Received: 16.01.2016

DOI: 10.17377/smzh.2017.58.114


 English version:
Siberian Mathematical Journal, 2017, 58:1, 109–112

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026