Abstract:
Under study are the simple infinite-dimensional abelian Jordan superalgebras not isomorphic to the superalgebra of a bilinear form. We prove that the even part of such superalgebra is a differentially simple associative commutative algebra, and the odd part is a finitely generated projective module of rank 1. We describe unital simple Jordan superalgebras with associative nil-semisimple even part possessing two even elements which induce a nonzero derivation.
Keywords:Jordan superalgebra, superalgebra of vector type, Jordan bracket, differential algebra, projective module.