RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 5, Pages 1109–1113 (Mi smj2811)

This article is cited in 2 papers

Ihm-admissible and Ihm-forbidden quasiorders on sets

A. G. Pinus

Novosibirsk State Technical University, Novosibirsk, Russia

Abstract: We consider the existence problems for quasiorders on sets in terms of which it is possible to describe the algebraic closure operator on subsets of universal algebras with a given universe.

Keywords: quasiorder, inner homomorphism of an algebra, algebraic set.

UDC: 512.57

Received: 18.11.2015

DOI: 10.17377/smzh.2016.57.516


 English version:
Siberian Mathematical Journal, 2016, 57:5, 866–869

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026