RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 5, Pages 1062–1077 (Mi smj2807)

This article is cited in 4 papers

Subcomplex and sub-Kähler structures

E. S. Kornev

Kemerovo State University, Kemerovo, Russia

Abstract: We introduce the notion of subcomplex structure on a manifold of arbitrary real dimension and consider some important particular cases of pseudocomplex structures: pseudotwistor, affinor, and sub-Kähler structures. It is shown how subtwistor and affinor structures can give sub-Riemannian and sub-Kähler structures. We also prove that all classical structures (twistor, Kähler, and almost contact metric structures) are particular cases of subcomplex structures. The theory is based on the use of a degenerate $1$-form or a $2$-form with radical of arbitrary dimension.

Keywords: subcomplex structure, affinor structure, sub-Kähler structure, radical of a multilinear form.

UDC: 514.763

Received: 14.10.2015

DOI: 10.17377/smzh.2016.57.512


 English version:
Siberian Mathematical Journal, 2016, 57:5, 830–840

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026