RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 5, Pages 959–968 (Mi smj2796)

This article is cited in 1 paper

Quasiconformality of the injective mappings transforming spheres to quasispheres

V. V. Aseevab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We prove that every injective mapping of a domain $D\subset\overline{\mathbb R}^n$ transforming spheres $\Sigma\subset D$ to $K$-quasispheres (the images of spheres under $K$-quasiconformal automorphisms of $\overline{\mathbb R}^n$) is $K'$-quasiconformal with $K'$ depending only on $K$ and tending to 1 as $K\to1$. This is a quasiconformal analog of the classical Carathéodory Theorem on the Möbius property of an injective mapping of a domain $D\subset\mathbb R^n$ which sends spheres to spheres.

Keywords: Möbius mapping, quasiconformal mapping, quasiconformality coefficient, quasimöbius mapping, quasicircle, quasisphere, separator, absolute cross-ratio.

UDC: 517.54

Received: 26.10.2015

DOI: 10.17377/smzh.2016.57.501


 English version:
Siberian Mathematical Journal, 2016, 57:5, 747–753

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026