RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 3, Pages 641–649 (Mi smj2769)

This article is cited in 2 papers

Behavior of the Fourier–Walsh coefficients of a corrected function

L. N. Galoyan, R. G. Melikbekyan

Faculty of Physics, Yerevan State University, Yerevan, Armenia

Abstract: We prove that, given a sequence $\{a_k\}^\infty_{k=1}$ with $a_k\downarrow0$ and $\{a_k\}^\infty_{k=1}\not\in l_2$, reals $0<\epsilon<1$ and $p\in[1,2]$, and $f\in L^p(0,1)$, we can find $\tilde f\in L^p(0,1)$ with $\operatorname{mes}\{f\ne\tilde f\}<\epsilon$ whose nonzero Fourier–Walsh coefficients $c_k(\tilde f)$ are such that $|c_k(\tilde f)|=a_k$ for $k\in\operatorname{spec}(\tilde f)$.

Keywords: Fourier coefficients, Walsh system, $L^p(0,1)$ space.

UDC: 517.51

Received: 30.09.2015

DOI: 10.17377/smzh.2016.57.311


 English version:
Siberian Mathematical Journal, 2016, 57:3, 505–512

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026