RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 3, Pages 495–511 (Mi smj2760)

This article is cited in 1 paper

Möbius bilipschitz homogeneous arcs on the plane

V. V. Aseev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Abstract:möbius bilipschitz mapping is an $\eta$-quasimöbius mapping with the linear distortion function $\eta(t)=Kt$. We show that if an open Jordan arc $\gamma\subset\overline{\mathbb C}$ with distinct endpoints $a$ and $b$ is homogeneous with respect to the family $\mathscr F_K$ of möbius bilipschitz automorphisms of the sphere $\overline{\mathbb C}$ with $K$ specified then $\gamma$ has bounded turning $RT(\gamma)$ in the sense of Rickman and, consequently, $\gamma$ is a quasiconformal image of a rectilinear segment. The homogeneity of $\gamma$ with respect to $\mathscr F_K$ means that for all $x,y\in\gamma\setminus\{a,b\}$ there exists $f\in\mathscr F_K$ with $f(\gamma)=\gamma$ and $f(x)=y$. In order to estimate $RT(\gamma)$ from above, we introduce the condition $BR(\delta)$ of bounded rotation of $\gamma$, and then the explicit bound depends only on $K$ and $\delta$.

Keywords: bilipschitz homogeneity, quasiconformal homogeneity, quasiconformal mapping, bilipschitz mapping, quasimöbius embedding, möbius bilipschitz mapping, möbius bilipschitz homogeneity, bounded turning.

UDC: 517.54

Received: 10.01.2014
Revised: 29.05.2015

DOI: 10.17377/smzh.2016.57.302


 English version:
Siberian Mathematical Journal, 2016, 57:3, 385–397

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026