RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 2, Pages 469–478 (Mi smj2758)

This article is cited in 11 papers

Best approximation methods and widths for some classes of functions in $H_{q,\rho}$, $1\le q\le\infty$, $0<\rho\le1$

M. Sh. Shabozova, G. A. Yusupovb

a Juraev Institute of Mathematics, Tajik Academy of Sciences, Dushanbe, Tajikistan
b Tajik National University, Dushanbe, Tajikistan

Abstract: We compute the exact values of widths for various widths for the classes $W_{q,a}^{(r)}(\Phi,\mu)$, $\mu\ge1$, of analytic functions in the disk belonging to the Hardy space $H_q$, $q\ge1$, whose averaged moduli of continuity of the boundary values of the derivatives with respect to the argument $f_a^{(r)}$, $r\in\mathbb N$, are dominated by a given function $\Phi$. For calculating the linear and Gelfand $n$-widths, we use best linear approximation for these functions.

Keywords: best linear approximation method, modulus of continuity, Hardy space, majorant, $n$-width.

UDC: 517.5

Received: 31.03.2015

DOI: 10.17377/smzh.2016.57.219


 English version:
Siberian Mathematical Journal, 2016, 57:2, 369–376

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026