RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 2, Pages 410–419 (Mi smj2753)

This article is cited in 7 papers

Finding ein components in the moduli spaces of stable rank $2$ bundles on the projective $3$-space

A. A. Kytmanova, N. N. Osipova, S. A. Tikhomirovbc

a Siberian Federal University, Krasnoyarsk, Russia
b Koryazhma Branch of Lomonosov Nothern (Arctic) Federal University, Koryazhma, Russia
c Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, Russia

Abstract: Some method is proposed for finding Ein components in moduli spaces of stable rank $2$ vector bundles with first Chern class $c_1=0$ on the projective $3$-space. We formulate and illustrate a conjecture on the growth rate of the number of Ein components in dependence on the numbers of the second Chern class. We present a method for calculating the spectra of the above bundles, a recurrent formula, and an explicit formula for computing the number of the spectra of these bundles.

Keywords: stable bundle, Chern class, moduli space.

UDC: 512.7

Received: 05.05.2015

DOI: 10.17377/smzh.2016.57.214


 English version:
Siberian Mathematical Journal, 2016, 57:2, 322–329

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026