RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 1, Pages 98–112 (Mi smj2731)

This article is cited in 12 papers

Constant coefficient linear difference equations on the rational cones of the integer lattice

E. K. Leĭnartasa, T. I. Nekrasova

a Siberian Federal University, Krasnoyarsk, Russia

Abstract: We obtain a sufficient solvability condition for Cauchy problems for a polynomial difference operator with constant coefficients. We prove that if the generating function of the Cauchy data of a homogeneous Cauchy problem lies in one of the classes of Stanley's hierarchy then the generating function of the solution belongs to the same class.

Keywords: higher-dimensional difference equations, Cauchy problem, generating function, $D$-finite Laurent series.

UDC: 517.55+517.96

Received: 10.11.2014

DOI: 10.17377/smzh.2016.57.108


 English version:
Siberian Mathematical Journal, 2016, 57:1, 74–85

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026