RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 1, Pages 67–84 (Mi smj2729)

This article is cited in 2 papers

Invariant affinor and sub-Kähler structures on homogeneous spaces

E. S. Korneva, Ya. V. Slavolyubovab

a Kemerovo State University, Kemerovo, Russia
b Kemerovo Branch of Russian State University of Economic and Trade, Kemerovo, Russia

Abstract: We consider $G$-invariant affinor metric structures and their particular cases, sub-Kähler structures, on a homogeneous space $G/H$. The affinor metric structures generalize almost Kähler and almost contact metric structures to manifolds of arbitrary dimension. We consider invariant sub-Riemannian and sub-Kähler structures related to a fixed $1$-form with a nontrivial radical. In addition to giving some results for homogeneous spaces of arbitrary dimension, we study these structures separately on the homogeneous spaces of dimension 4 and 5.

Keywords: affinor structures, Kähler structures, sub-Riemannian metrics, homogeneous spaces.

UDC: 514.765

Received: 15.12.2014
Revised: 13.07.2015

DOI: 10.17377/smzh.2016.57.106


 English version:
Siberian Mathematical Journal, 2016, 57:1, 51–63

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026