RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 5, Pages 1142–1153 (Mi smj2703)

Ricci flow on contact manifolds

V. Pirhadi, A. Razavi

Department of Pure Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran

Abstract: This paper is devoted to Ricci flow on contact manifolds. We define the contact curvature flow and establish a short time existence. Meanwhile, we study a contact Ricci soliton and prove that every solution of the unnormalized contact curvature flow is a selfsimilar solution corresponding to a contact Ricci soliton which is a steady soliton. Finally we show that a time dependent family of contact Einstein, Sasakian, $\mathrm K$-contact, or $\eta$-Einstein $1$-forms $\eta_t$ is a solution of the normalized contact curvature flow if it is a conformal variation of an initial $1$-form $\eta_0$.

Keywords: contact manifold, Einstein manifold, Ricci flow, Ricci soliton.

UDC: 514.763

Received: 22.07.2014

DOI: 10.17377/smzh.2015.56.513


 English version:
Siberian Mathematical Journal, 2015, 56:5, 912–921

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026