Abstract:
We give sufficient conditions ensuring a construction of solution to the equation
$$
\sum^m_{k=0}P_k(\sigma)\lambda^ku(\lambda)=f(\lambda),
$$
with $\sigma\in\mathbb R^n$ and $\lambda\in G\subset\mathbb C$, where $f(\lambda) and u(\lambda)$are tempered distributions depending holomorphically on $\lambda$, while the polynomial $P_m(\sigma)$ may have real zeros.