RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 4, Pages 896–908 (Mi smj2685)

This article is cited in 1 paper

Ideal growth in metabelian Lie $p$-algebras

V. M. Petrogradskya, I. A. Subbotinb

a Department of Mathematics, University of Brasilia, Brasilia, Brazil
b Faculty of Mathematics and Information Technologies, Ulyanovsk State University, Ulyanovsk, Russia

Abstract: Consider a finitely generated restricted Lie algebra $L$ over the finite field $\mathbb F_q$ and, given $n\ge0$, denote the number of restricted ideals $H\subset L$ with $\dim_{\mathbb F_q}L/H=n$ by $c_n(L)$. We show for the free metabelian restricted Lie algebra $L$ of finite rank that the ideal growth sequence grows superpolynomially; namely, there exist positive constants $\lambda_1$ and $\lambda_2$ such that $q^{\lambda_1n^2}\le c_n(L)\le q^{\lambda_2n^2}$ for $n$ large enough.

Keywords: restricted Lie algebra, metabelian Lie algebra, enumerative combinatorics, subgroup growth, subalgebra growth, ideal growth.

UDC: 512.55

Received: 06.10.2014

DOI: 10.17377/smzh.2015.56.413


 English version:
Siberian Mathematical Journal, 2015, 56:4, 714–724

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026