RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 3, Pages 650–662 (Mi smj2667)

This article is cited in 4 papers

Axiomatizability and completeness of the class of injective acts over a commutative monoid or a group

A. A. Stepanovaab

a Far Eastern Federal University, Vladivostok, Russia
b Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia

Abstract: We study monoids $S$ over which the class of injective $S$-acts is axiomatizable, complete, and model complete. We prove that, for a countable commutative monoid or a countable group $S$, the class of injective $S$-acts is axiomatizable if and only if $S$ is a finitely generated monoid. We show that there is no nontrivial monoid nor a group the class of injective acts over which is complete, model complete, or categorical.

Keywords: axiomatizable class, complete class, model complete class, categorical class, act, injective act.

UDC: 510.67+512.56

Received: 15.09.2014

DOI: 10.17377/smzh.2015.56.315


 English version:
Siberian Mathematical Journal, 2015, 56:3, 516–525

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026