RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 3, Pages 487–497 (Mi smj2654)

This article is cited in 3 papers

Gradewise properties of subgroups of finite groups

W. Guoa, A. N. Skibab

a University of Science and Technology of China, School of Mathematical Science, Hefei, 230026, P. R. China
b Francisk Skorina Gomel State University, Gomel, Belarus

Abstract: Given a subgroup $A$ of a group $G$ and some group-theoretic property $\theta$ of subgroups, say that $A$ enjoys the gradewise property $\theta$ in $G$ whenever $G$ has a normal series $1=G_0\le G_1\le\dots\le G_t=G$ such that for each $i=1,\dots,t$ the subgroup $(A\cap G_i)G_{i-1}/G_{i-1}$ enjoys the property $\theta$ in $G/G_{i-1}$. Basing on this concept, we obtain a new characterization of finite supersolvable and solvable groups.

Keywords: finite group, subgroup functor, gradewise property, solvable group, supersolvable group.

UDC: 512.542

Received: 04.08.2014

DOI: 10.17377/smzh.2015.56.302


 English version:
Siberian Mathematical Journal, 2015, 56:3, 384–392

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026