RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 2, Pages 409–419 (Mi smj2646)

This article is cited in 1 paper

The monodromy of a general algebraic function

E. N. Mikhalkin

Siberian Federal University, Krasnoyarsk, Russia

Abstract: We consider a general reduced algebraic equation of degree $n$ with complex coefficients. The solution to this equation, a multifunction, is called a general algebraic function. In the coefficient space we consider the discriminant set $\nabla$ of the equation and choose in its complement the maximal polydisk domain $D$ containing the origin. We describe the monodromy of the general algebraic function in a neighborhood of $D$. In particular, we prove that $\&nabla$ intersects the boundary $\partial D$ along $n$ real algebraic surfaces $\mathscr S^{(j)}$ of dimension $n-2$. Furthermore, every branch $y_j(x)$ of the general algebraic function ramifies in $D$ only along the pair of surfaces $\mathscr S^{(j)}$ and $\mathscr S^{(j-1)}$.

Keywords: algebraic equation, hypergeometric function, discriminant, integral representation, monodromy.

UDC: 517.55+512.626

Received: 18.07.2014


 English version:
Siberian Mathematical Journal, 2015, 56:2, 330–338

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026