RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 2, Pages 377–388 (Mi smj2644)

Propermutable characterizations of finite soluble $PST$-groups and $PT$-groups

X. Yi

Zhejiang Sci-tech University

Abstract: Let $H$ and $X$ be subgroups of a group $G$. We say that a subgroup $H$ is $X$-propermutable in $G$ provided that there is a subgroup $B$ of $G$ such that $G=N_G(H)B$ and $H$ $X$-permutes (in the sense of [1]) with all subgroups of $B$. In this paper we analyze the influence of $X$-propermutable subgroups on the structure of a finite group $G$. In particular, it is proved that $G$ is a soluble $PST$-group if and only if all Hall subgroups and all maximal subgroups of every Hall subgroup of $G$ are $X$-propermutable in $G$, where $X=Z_\infty(G)$.

Keywords: finite group, $X$-propermutable subgroup, $PST$-group, $PT$-group, Hall subgroup, supersoluble group.

UDC: 512.54

Received: 06.06.2014


 English version:
Siberian Mathematical Journal, 2015, 56:2, 304–312

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026