RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 1, Pages 94–99 (Mi smj2623)

This article is cited in 13 papers

A new characterization of some finite simple groups

M. F. Ghasemabadi, A. Iranmanesh, F. Mavadatpour

Tarbiat Modares University, Tehran, Iran

Abstract: Let $G$ be a finite group. A vanishing element of $G$ is $g\in G$ such that $\chi(g)=0$ for some $\chi\in\operatorname{Irr}(G)$ of the set of irreducible complex characters of $G$. Denote by $\operatorname{Vo}(G)$ the set of the orders of vanishing elements of $G$. A finite group $G$ is called a VCP-group if every element in $\operatorname{Vo}(G)$ is of prime power order. The main purpose of this paper is to investigate a new characterization related to $\operatorname{Vo}(G)$ for all finite nonabelian simple VCP-groups. We prove that if $G$ is a finite group and $M$ is a finite nonabelian simple VCP-group such that $\operatorname{Vo}(G)=\operatorname{Vo}(M)$ and $|G|=|M|$, then $G\cong M$.

Keywords: finite simple groups, zeros of characters.

UDC: 512.54

Received: 02.10.2013


 English version:
Siberian Mathematical Journal, 2015, 56:1, 78–82

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026