Abstract:
Let $x$ be an integrable function on $[0,1]$ and let $Px$ be the Paley function constructed from the expansion of $x$ in the Fourier–Haar series. If $E$ is a rearrangement invariant space on $[0,1]$ then $P(E)$ stands for the space with the norm $\|Px\|_E$. Among other results, we prove that $P(E)$ is reflexive if and only if so is $E$.
Keywords:rearrangement invariant space, Haar function, Paley function, real interpolation method.