RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2015 Volume 56, Number 1, Pages 27–35 (Mi smj2619)

This article is cited in 1 paper

Paley spaces

S. V. Astashkina, E. M. Semenovb

a Samara State University, Samara, Russia
b Voronezh State University, Voronezh, Russia

Abstract: Let $x$ be an integrable function on $[0,1]$ and let $Px$ be the Paley function constructed from the expansion of $x$ in the Fourier–Haar series. If $E$ is a rearrangement invariant space on $[0,1]$ then $P(E)$ stands for the space with the norm $\|Px\|_E$. Among other results, we prove that $P(E)$ is reflexive if and only if so is $E$.

Keywords: rearrangement invariant space, Haar function, Paley function, real interpolation method.

UDC: 517.982.22+517.983.23

Received: 25.12.2013


 English version:
Siberian Mathematical Journal, 2015, 56:1, 21–27

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026