RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2014 Volume 55, Number 6, Pages 1328–1333 (Mi smj2607)

On a generalization of the Lewittes theorem on Weierstrass points

M. P. Limonovab

a Chelyabinsk State University, Chelyabinsk, Russia
b Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: Suppose that $X$ is a compact Riemann surface of genus $g\ge2$, while $\sigma$ is an automorphism of $X$ of order $n$, and $g^*$ is the genus of the quotient surface $X^*=X/\langle\sigma\rangle$. In 1951 Schöneberg obtained a sufficient condition for a fixed point $P\in X$ of $\sigma$ to be a Weierstrass point of $X$. Namely, he showed that $P$ is a Weierstrass point of $X$ if $g^*\ne[g/n]$, where $[x]$ is the integral part of $x$. Somewhat later Lewittes proved the following theorem, equivalent to Schöneberg's theorem: If a nontrivial automorphism $\sigma$ fixes more than four points of $X$ then all of them are Weierstrass points.
These assertions are connected with the notion of a regular covering. We generalize the Lewittes theorem to the case of nonregular coverings and obtain some related corollaries.

Keywords: Riemann surface, Weierstrass point, regular covering, nonregular covering.

UDC: 517.545

Received: 07.02.2014


 English version:
Siberian Mathematical Journal, 2014, 55:6, 1084–1088

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026