RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2014 Volume 55, Number 6, Pages 1250–1278 (Mi smj2602)

This article is cited in 2 papers

On embedding some $G$-filtered rings into skew fields

A. I. Valitskas

Tobolsk State Social Pedagogical Academy, Tobolsk, Russia

Abstract: We consider the filtered rings with filtration $v$ taking values in an ordered group $G$ (or $G$-filtered rings). We prove that if a ring $R$ of this type satisfies the condition
$$ \forall a,b\in R^*\quad\forall\varepsilon\in G\quad\exists x,y\in R^*\qquad v(a\cdot x-b\cdot y)>\varepsilon\cdot v(a\cdot x) $$
then $R$ embeds into a skew field. This skew field $D$ becomes a topological ring in the topology induced by an extension of $v$, while $R\cdot R^{-1}$ is everywhere dense in $D$.

Keywords: ring, group, ordered group, skew field, filtration, prime matrix ideal, Lie algebra, universal enveloping algebra.

UDC: 512.552.52+512.552.7

Received: 22.01.2014


 English version:
Siberian Mathematical Journal, 2014, 55:6, 1017–1041

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026