RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2014 Volume 55, Number 3, Pages 627–649 (Mi smj2559)

This article is cited in 4 papers

Embedding theorems and a variational problem for functions on a metric measure space

N. N. Romanovskiĭ

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: We use a new method to prove the Sobolev embedding theorem for functions on a metric space and study other questions of the theory of Sobolev spaces on a metric space. We prove the existence and uniqueness of solution to a variational problem.

Keywords: Sobolev classes, Nikol'skiĭ classes, functions on a metric space, embedding theorems, compactness of the embedding, variational problem.

UDC: 517.518+517.518.23

Received: 06.08.2013


 English version:
Siberian Mathematical Journal, 2014, 55:3, 511–529

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026