RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2014 Volume 55, Number 1, Pages 90–96 (Mi smj2515)

This article is cited in 4 papers

Embedding of Baumslag–Solitar groups into the generalized Baumslag–Solitar groups

F. A. Dudkinab

a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: A finitely generated group $G$ that acts on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag–Solitar group or GBS-group. Let $p$ and $q$ be coprime integers other than $0,1$, and $-1$. We prove that the Baumslag–Solitar group $BS(p,q)$ embeds into $G$ if and only if the equation $x^{-1}y^px=y^q$ is solvable in $G$ for $y\ne1$ i.e., $\frac pq\in\Delta(G)$, where $\Delta$ is the modular homomorphism.

Keywords: Baumslag–Solitar group, generalized Baumslag–Solitar group, embedding.

UDC: 512.543

Received: 21.03.2013


 English version:
Siberian Mathematical Journal, 2014, 55:1, 72–77

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026