RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2014 Volume 55, Number 1, Pages 3–10 (Mi smj2507)

This article is cited in 2 papers

A quasiconformal analog of Carathéodory's criterion for the Möbius property of mappings

V. V. Aseev

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: In 1937, Carathéodory proved that every injective mapping $f\colon G\to f(G)\subset\overline{\mathbf C}$ of a domain $G\subset\overline{\mathbf C}$, taking circles to circles, is Möbius. The present article shows that if each injective mapping takes circles onto $k$-quasicircles then it is $K$-quasiconformal with $K\le k+\sqrt{k^2-1}$.

Keywords: quasiconformal mapping, Möbius mapping, quasicircle, reverse isodiametric inequality.

UDC: 517.54

Received: 31.05.2013


 English version:
Siberian Mathematical Journal, 2014, 55:1, 1–6

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026