RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2013 Volume 54, Number 6, Pages 1216–1236 (Mi smj2489)

This article is cited in 3 papers

On a random walk model on sets with self-similar structure

N. S. Arkashovab, V. A. Selezneva

a Novosibirsk State Technical University, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We construct a random walk model on sets with self-similar structure parametrized by a real line. The model in particular explains the arising nonlinearity with respect to the mean square time in the so-called anomalous transports.

Keywords: self-similar sets, random walk, anomalous transport, diffusion, Hausdorff measure, Hausdorff dimension.

UDC: 519.216.22+517.54

Received: 13.12.2012


 English version:
Siberian Mathematical Journal, 2013, 54:6, 968–983

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026