RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2013 Volume 54, Number 5, Pages 963–971 (Mi smj2469)

This article is cited in 1 paper

Mappings slightly changing a fixed cross-ratio

V. V. Aseev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Abstract: Given a complex number $\lambda\ne0,1$, we consider local homeomorphisms of a domain $D\subset\overline{\mathbb C}$ that, in a neighborhood of every point, change slightly (with a given smallness parameter $\delta$) the cross-ratio of tetrads with fixed cross-ratio $\lambda$. We prove the quasiconformality of these mappings and obtain bounds for the coefficient of quasiconformality tending to 1 as $\delta\to0$.

Keywords: cross-ratio, Möbius mapping, quasiconformal mapping, coefficient of quasiconformality, criterion for the Möbius property, Möbius midpoint condition.

UDC: 517.54

Received: 25.09.2012


 English version:
Siberian Mathematical Journal, 2013, 54:5, 769–775

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026