RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2013 Volume 54, Number 4, Pages 852–870 (Mi smj2462)

This article is cited in 47 papers

Coefficient characterizations and sections for some univalent functions

M. Obradovića, S. Ponnusamyb, K.-J. Wirthsc

a Department of Mathematics, Faculty of Civil Engineering, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia
b Indian Statistical Institute (ISI), Chennai Centre, SETS (Society for Electronic Transactions and Security), MGR Knowledge City, CIT Campus, Taramani, Chennai 600113 India
c Institut für Analysis und Algebra, TU Braunschweig, Braunschweig 38106 Germany

Abstract: Let $\mathscr G(\alpha)$ denote the class of locally univalent normalized analytic functions $f$ in the unit disk $|z|<1$ satisfying the condition
$$ \mathrm{Re}\left(1+\frac{zf''(z)}{f'(z)}\right)<1+\frac\alpha2\qquad\text{for}\quad|z|<1 $$
and for some $0<\alpha\le1$. We firstly prove sharp coefficient bounds for the moduli of the Taylor coefficients $a_n$ of $f\in\mathscr G(\alpha)$. Secondly, we determine the sharp bound for the Fekete–Szegö functional for functions in $\mathscr G(\alpha)$ with complex parameter $\lambda$. Thirdly, we present a convolution characterization for functions $f$ belonging to $\mathscr G(\alpha)$ and as a consequence we obtain a number of sufficient coefficient conditions for $f$ to belong to $\mathscr G(\alpha)$. Finally, we discuss the close-to-convexity and starlikeness of partial sums of $f\in\mathscr G(\alpha)$. In particular, each partial sum $s_n(z)$ of $f\in\mathscr G(1)$ is starlike in the disk $|z|\le1/2$ for $n\ge11$. Moreover, for $f\in\mathscr G(1)$, we also have $\mathrm{Re}(s'_n(z))>0$ in $|z|\le1/2$ for $n\ge11$.

Keywords: analytic function, univalent function, starlike function, close-to-convex function, convex function, coefficient inequality, area theorem, radius of univalency, subordination, convolution, Fekete–Szegö functional.

UDC: 517.54

Received: 20.09.2012


 English version:
Siberian Mathematical Journal, 2013, 54:4, 679–696

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026