RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2013 Volume 54, Number 4, Pages 762–774 (Mi smj2456)

This article is cited in 5 papers

Pseudo-Riemannian manifolds with recurrent spinor fields

A. S. Galaev

University of Hradec Králové, Hradec Králové, Czech Republic

Abstract: The existence of a recurrent spinor field on a pseudo-Riemannian spin manifold ($M,g$) is closely related to the existence of a parallel $1$-dimensional complex subbundle of the spinor bundle of ($M,g$). We characterize the following simply connected pseudo-Riemannian manifolds that admit these subbundles in terms of their holonomy algebras: Riemannian manifolds, Lorentzian manifolds, pseudo-Riemannian manifolds with irreducible holonomy algebras, and pseudo-Riemannian manifolds of neutral signature admitting two complementary parallel isotropic distributions.

Keywords: pseudo-Riemannian manifold, recurrent spinor field, holonomy algebra.

UDC: 514.744+514.764.214

Received: 18.02.2013


 English version:
Siberian Mathematical Journal, 2013, 54:4, 604–613

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026