RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2013 Volume 54, Number 2, Pages 417–435 (Mi smj2430)

This article is cited in 6 papers

Commutator identities of the homotopes of $(-1,1)$-algebras

S. V. Pchelintsev

Finance Academy of the Government of the Russian Federation, Moscow, Russia

Abstract: We study the commutator algebras of the homotopes of $(-1,1)$-algebras and prove that they are Malcev algebras satisfying the Filippov identity $h_\alpha(x,y,z)=0$ in the case of strictly $(-1,1)$-algebras. We also proved that every Malcev algebra with the identities $xy^3=0$, $xy^2z^2=0$ and $h_\alpha(x,y,z)=0$ is nilpotent of index at most 6.

Keywords: $(-1,1)$-algebra, Malcev algebra, homotope, identity, Filippov functions, nilpotency.

UDC: 512.554

Received: 07.12.2011


 English version:
Siberian Mathematical Journal, 2013, 54:2, 325–340

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026