RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2012 Volume 53, Number 6, Pages 1385–1390 (Mi smj2390)

This article is cited in 1 paper

Existence and nonuniqueness of solutions to a functional-differential equation

A. I. Noarov

Institute of Numerical Mathematics, Moscow, Russia

Abstract: We examine the functional-differential equation $\Delta u(\boldsymbol x)-\operatorname{div}(u(H(\boldsymbol x))\mathbf f(\boldsymbol x))=0$ on a torus which is a generalization of the stationary Fokker–Planck equation. Under sufficiently general assumptions on the vector field $\mathbf f$ and the map $H$, we prove the existence of a nontrivial solution. In some cases the subspace of solutions is established to be multidimensional.

Keywords: stationary Fokker–Planck equation, deviating argument.

UDC: 517.956.22

Received: 19.01.2012


 English version:
Siberian Mathematical Journal, 2012, 53:6, 1115–1118

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026