RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2012 Volume 53, Number 6, Pages 1310–1320 (Mi smj2384)

This article is cited in 28 papers

Centralizers of generalized derivations on multilinear polynomials in prime rings

L. Carini, V. De Filippis

University of Messina, Messina, Italy

Abstract: Let $R$ be a prime ring of characteristic different from 2, with Utumi quotient ring $U$ and extended centroid $C$, $\delta$ a nonzero derivation of $R$, $G$ a nonzero generalized derivation of $R$, and $f(x_1,\dots,x_n)$ a noncentral multilinear polynomial over $C$. If $\delta(G(f(r_1,\dots,r_n))f(r_1,\dots,r_n))=0$ for all $r_1,\dots,r_n\in R$, then $f(x_1,\dots,x_n)^2$ is central-valued on $R$. Moreover there exists $a\in U$ such that $G(x)=ax$ for all $x\in R$ and $\delta$ is an inner derivation of $R$ such that $\delta(a)=0$.

Keywords: prime ring, differential identities, generalized derivations.

UDC: 512.552.16

Received: 25.08.2011


 English version:
Siberian Mathematical Journal, 2012, 53:6, 1051–1060

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026