RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2012 Volume 53, Number 2, Pages 465–472 (Mi smj2319)

This article is cited in 2 papers

Finite groups with $S$-supplemented $p$-subgroups

N. Yanga, W. Guoa, O. L. Shemetkovab

a Department of mathematics, University of Science and Technology of China, Hefei, P. R. China
b Plekhanov Russian State University of Economics, Moscow

Abstract: Consider a finite group $G$. A subgroup is called $S$-quasinormal whenever it permutes with all Sylow subgroups of $G$. Denote by $B_{sG}$ the largest $S$-quasinormal subgroup of $G$ lying in $B$. A subgroup $B$ is called $S$-supplemented in $G$ whenever there is a subgroup $T$ with $G=BT$ and $B\cap T\le B_{sG}$. A subgroup $L$ of $G$ is called a quaternionic subgroup whenever $G$ has a section $A/B$ isomorphic to the order 8 quaternion group such that $L\le A$ and $L\cap B=1$. This article is devoted to proving the following theorem.
Theorem. Let $E$ be a normal subgroup of a group $G$ and let $p$ be a prime divisor of $|E|$ such that $(p-1,|E|)=1$. Take a Sylow $p$-subgroup $P$ of $E$. Suppose that either all maximal subgroups of $P$ lacking $p$-supersoluble supplement in $G$ or all order $p$ subgroups and quaternionic order 4 subgroups of $P$ lacking $p$-supersoluble supplement in $G$ are $S$-supplemented in $G$. Then $E$ is $p$-nilpotent and all its $G$-chief $p$-factors are cyclic.

Keywords: finite group, $S$-quasinormal subgroup, cyclic chief factor.

UDC: 512.542

Received: 29.03.2011


 English version:
Siberian Mathematical Journal, 2012, 53:2, 371–376

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026