RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2012 Volume 53, Number 2, Pages 325–344 (Mi smj2309)

This article is cited in 1 paper

On the sharp upper bound for the number of holomorphic mappings of Riemann surfaces of low genus

I. A. Mednykhab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Novosibirsk

Abstract: We obtain an upper bound for the number of holomorphic mappings of a genus 3 Riemann surface onto a genus 2 Riemann surface in a series of cases. In particular, we establish that the number of holomorphic mappings of an arbitrary genus 3 Riemann surface onto an arbitrary genus 2 Riemann surface is at most 48. We show that this estimate is sharp and find pairs of Riemann surfaces for which it is attained.

Keywords: de Franchis theorem, holomorphic mapping, Riemann surface, orbifold, automorphism.

UDC: 517.545

Received: 10.05.2011


 English version:
Siberian Mathematical Journal, 2012, 53:2, 259–273

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026