RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2011 Volume 52, Number 6, Pages 1329–1340 (Mi smj2277)

Categorical Horn theories and modules

E. A. Palyutinab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Novosibirsk

Abstract: We study connection between categorical Horn theories and modules. We show that each function enrichment of any abelian group to a primitive normal structure is primitively equivalent to some module. We give a description for the categorical Horn classes of modules. We propose some sufficient conditions for a categorical Horn theory to be primitively equivalent to a theory of modules. In particular, such are the categorical Horn theories of enrichments of abelian groups with the conditions of primitive rank $\le3$ and the absence of predicate symbols of arity $\ge3$ in the language.

Keywords: categorical theory, Horn class, module, primitive formula, normal formula.

UDC: 510.67+512.57

Received: 17.05.2011


 English version:
Siberian Mathematical Journal, 2011, 52:6, 1056–1064

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026