RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2011 Volume 52, Number 3, Pages 502–511 (Mi smj2215)

This article is cited in 7 papers

On orthogonal curvilinear coordinate systems in constant curvature spaces

D. A. Berdinskii, I. P. Rybnikov

Novosibirsk State University, Novosibirsk

Abstract: We describe a method for constructing an $n$-orthogonal coordinate system in constant curvature spaces. The construction proposed is actually a modification of the Krichever method for producing an orthogonal coordinate system in the $n$-dimensional Euclidean space. To demonstrate how this method works, we construct some examples of orthogonal coordinate systems on the twodimensional sphere and the hyperbolic plane, in the case when the spectral curve is reducible and all irreducible components are isomorphic to a complex projective line.

Keywords: orthogonal coordinate systems, spaces of constant curvature, Baker–Akhiezer function.

UDC: 517.957

Received: 28.09.2010


 English version:
Siberian Mathematical Journal, 2011, 52:3, 394–401

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026