RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2010 Volume 51, Number 2, Pages 388–403 (Mi smj2092)

This article is cited in 14 papers

The tangent cone to a quasimetric space with dilations

S. V. Selivanova

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We propound some convergence theory for quasimetric spaces that includes as a particular case the Gromov–Hausdorff theory for metric spaces. We prove the existence of the tangent cone (with respect to the introduced convergence) to a quasimetric space with dilations and, as a corollary, to a regular quasimetric Carnot–Carathéodory space. This result gives, in particular, Mitchell's cone theorem.

Keywords: quasimetric space, Gromov–Hausdorff convergence, metric tangent cone, Carnot–Carathéodory space, dilation.

UDC: 515.124+514.753.28

Received: 21.11.2008
Revised: 03.06.2009


 English version:
Siberian Mathematical Journal, 2010, 51:2, 313–324

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026