RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2010 Volume 51, Number 1, Pages 204–211 (Mi smj2077)

This article is cited in 2 papers

The uniqueness of a solution to the renewal type system of integral equations on the line

M. S. Sgibnev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We study the uniqueness of a solution to a renewal type system of integral equations $\text{\mathversion{bold}$z$}=\text{\mathversion{bold}$g$}+\text{\mathversion{bold}$F$}*\text{\mathversion{bold}$z$}$ on the line $\mathbb R$; here {\mathversion{bold}$z$} is the unknown vector function, {\mathversion{bold}$g$} is a known vector function, and {\mathversion{bold}$F$} is a nonlattice matrix of finite measures on $\mathbb R$ such that the matrix $\text{\mathversion{bold}$F$}(\mathbb R)$ is of spectral radius 1 and indecomposable. We show that in a certain class of functions each solution to the corresponding homogeneous system coincides almost everywhere with a right eigenvector of $\text{\mathversion{bold}$F$}(\mathbb R)$ with eigenvalue 1.

Keywords: system of integral equations, renewal equation, uniqueness.

UDC: 517.968.28+517.982.43

Received: 22.10.2008


 English version:
Siberian Mathematical Journal, 2010, 51:1, 168–173

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026