RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2009 Volume 50, Number 6, Pages 1255–1268 (Mi smj2046)

This article is cited in 12 papers

On nonnilpotent groups in which every two 3-maximal subgroups are permutable

W. Guoa, Yu. V. Lutsenkob, A. N. Skibab

a Department of Mathematics, Xuzhou Normal University, Xuzhou, P. R. China
b Francisk Skaryna Gomel State University, Faculty of Mathematics, Gomel', Bearus

Abstract: We describe the structure of finite nonnilpotent groups in which every two 3-maximal subgroups are permutable. In particular, we describe finite nonnilpotent groups in which all 2-maximal or all 3-maximal subgroups are normal.

Keywords: Sylow subgroup, Schmidt group, $n$-maximal subgroup, nilpotent group, supersoluble group, soluble group, permutable subgroup.

UDC: 512.542

Received: 10.09.2008


 English version:
Siberian Mathematical Journal, 2009, 50:6, 988–997

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026