RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2009 Volume 50, Number 5, Pages 1176–1194 (Mi smj2039)

This article is cited in 6 papers

Local audibility of a hyperbolic metric

V. A. Sharafutdinov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: A Riemannian metric $g$ on a compact boundaryless manifold is said to be locally audible if the following statement is true for every metric $g'$ sufficiently close to $g$: if $g$ and $g'$ are isospectral then they are isometric. The local audibility is proved of a metric of constant negative sectional curvature.

Keywords: spectral geometry, Riemannian manifold of negative sectional curvature.

UDC: 515.168+517.984.5

Received: 23.03.2009


 English version:
Siberian Mathematical Journal, 2009, 50:5, 929–944

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026